If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+6x=374
We move all terms to the left:
x^2+6x-(374)=0
a = 1; b = 6; c = -374;
Δ = b2-4ac
Δ = 62-4·1·(-374)
Δ = 1532
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1532}=\sqrt{4*383}=\sqrt{4}*\sqrt{383}=2\sqrt{383}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{383}}{2*1}=\frac{-6-2\sqrt{383}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{383}}{2*1}=\frac{-6+2\sqrt{383}}{2} $
| (-X/e^X-e^X+2)=0 | | (x+6)(x)=374 | | 12(t-5)+3t=5(3t+5)-10 | | (23-2x)(15-2x)=172,5 | | 14k+6.5=k+12 | | 5x=25/2 | | 5x=25÷2 | | (4x-6)(2x+4)=16 | | 13k+10=k+15 | | 5*(2x-10)=4x(x+6) | | 12x-x=5x+6 | | 3x2=1+5 | | 2x+16=7x+8 | | x+6/5=12 | | 30x=-225 | | 2x+x-7=113 | | 10/k=4/8 | | 4(a-3)=2(a-3) | | ((2d+7)/6)-((d-5)/3)=0 | | (u+45)=3 | | ((2d-7)/6)-((d-5)/3)=0 | | 5=(z+2) | | 3(k-7)+6=15 | | 20=3(z)-1 | | 3(p+7)=5p-7 | | 3x=5x+26 | | 1+(2x-1)/3=0 | | 2(3+2x)=5(x-4) | | (D-1)^3y=4 | | 3b-6=6b-15 | | m2=225 | | 10-4x+2x^2=2(x^2-2x+5) |